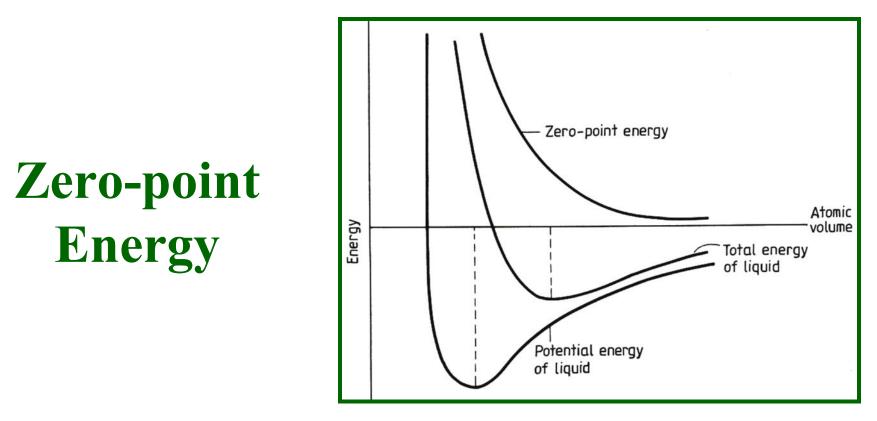

Superfluidity in Liquid Helium

Boiling Points

- The *two helium isotopes have the lowest boiling points* of all known substances:
 3.2 K for ³He and 4.2 K for ⁴He.
- Both isotopes apparently remain liquid down to absolute zero. To solidify helium, **a pressure of about 25 atmospheres is required.**
- Lack of a solid phase for helium at all temperatures & at atmospheric pressure is due to two factors:

1. The low atomic mass.

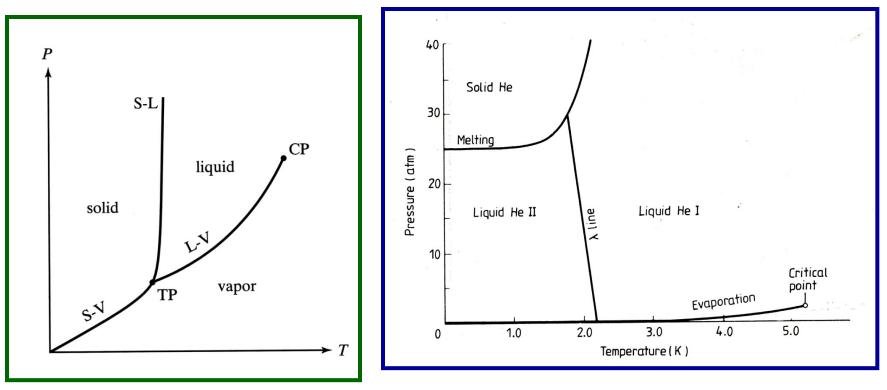
2. The extremely weak forces between atoms (Van der Waals Forces)

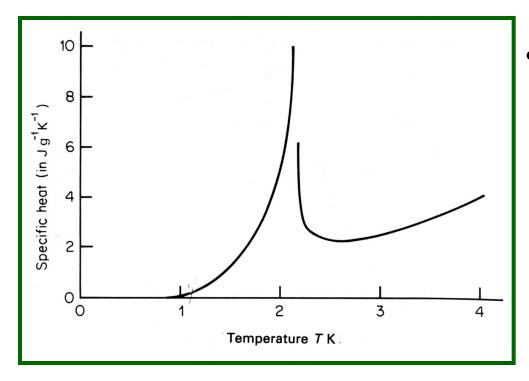

• The low atomic mass means a high zero-point energy. This can be understood from the uncertainty principle.

Zero-point Energy

• The uncertainty in momentum of a particle in a cavity with characteristic dimension **R** is

 $\Delta p \sim h/R$.

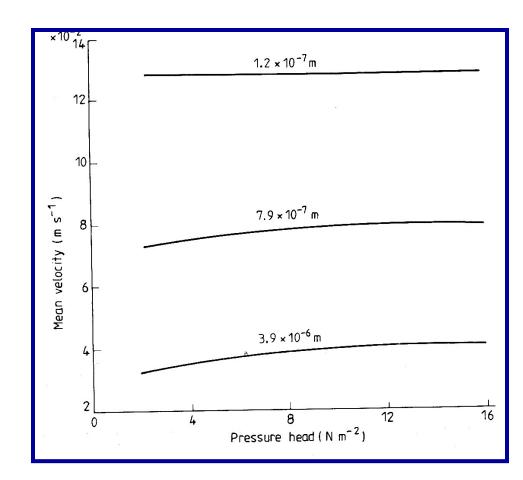

- So it's zero-point energy is:
 - $E_0 \sim (\Delta p)^2 / 2m$ or $E_0 \sim h^2 / 2mR^2.$
- This large zero-point energy must be added to the potential energy of the liquid to give the liquid's total energy.


- Because He atoms are so light, the zero-point Energy is comparable to the PE, & the minimum of the total energy occurs at a high atomic volume.
- For other inert gas atoms, the zero-point energy is of negligible magnitude.

Phase Diagrams

- The large zero-point energy of the liquid eliminates the solid-vapor curve that is present for a normal material.
- The λ line occurs only for ⁴He, and is associated with the λ -point transition to superfluid behavior near 2 K.

The λ Specific Heat Transition in Liquid ⁴He

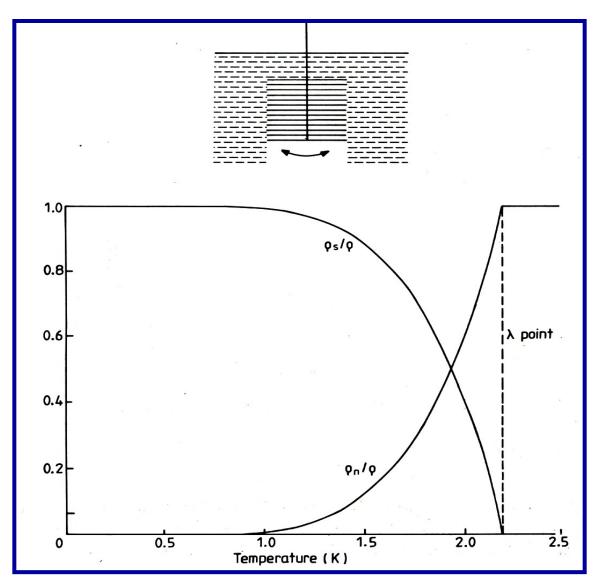

If ⁴He, which liquifies below 4.2 K, is cooled by lowering the pressure above it, bubbles of vapor form in the liquid, which boils vigorously.

- However, below 2.17 K, the λ point, the liquid becomes very still, as the transition from a normal fluid (He I) to a superfluid (He II) occurs.
- In ³He, a transition to a superfluid occurs near 3 mK.

Macroscopic Properties of Superfluid He II

Zero Viscosity

- •Measurements showing zero resistance to flow of He II were first made in 1964.
- •This was done by showing that the flow velocity through channels of widths between $0.1 \mu m$ and $4 \mu m$ were independent of the pressure gradient along the channel.

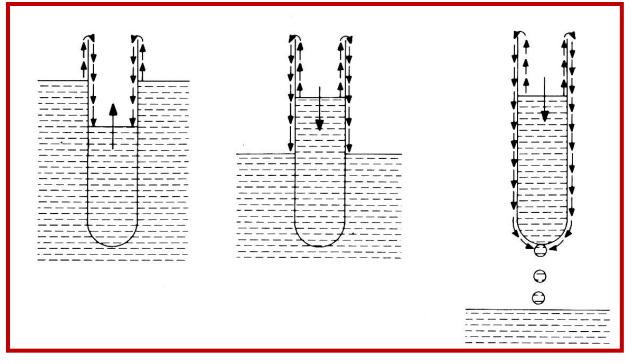


Two-fluid Model of He II

Zero viscosity

- •Experiments showed an apparent contradiction, that He II was both viscous & non-viscous at the same time.
- •This result was the source of the *two-fluid* model of He II, introduced by Tisza in 1938.
- •This is a quantum effect; the liquid does not consist of two distinct fluids, one normal and the other a superfluid.
- •In Andronikashvili's 1946 experiment, a series of equally spaced metal disks, suspended by a torsion fibre, were made to oscillate in liquid He.
- •The results confirmed that He II consists of a normal viscous fluid of density ρ_n and a superfluid of density ρ_s , and allowed the ratios ρ_s / ρ and ρ_n / ρ to be measured as functions of temperature, where $\rho = \rho_n + \rho_s$.

Andronikashvili's Experiment

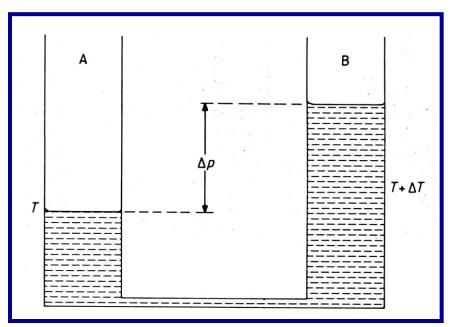

Macroscopic Properties of Superfluid He II Infinite thermal conductivity

•This makes it impossible to establish a temperature gradient in a bulk liquid. In a normal liquid, bubbles are formed when the local temperature in a small region in the body of the liquid is higher than the surface temperature.

Unusually thick adsorption film

•The unusual flow properties of He II result in the covering of the exposed surface of a partially immersed object being covered with a film about 30 nm (or 100 atomic layers) thick, near the surface, and decreasing with height.

Flow of He II over Beaker Walls

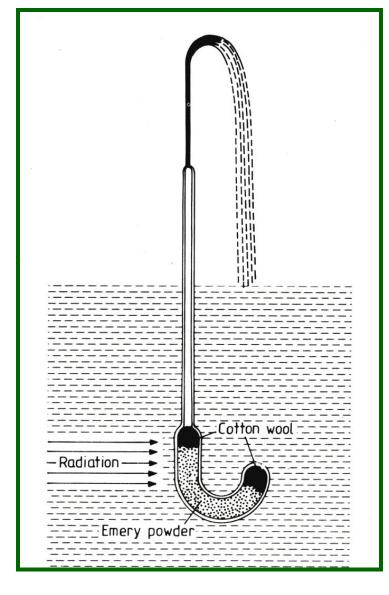


- The temperature is the same throughout the system, and the superfluid acts as a siphon, flowing through the film to equalize the levels in the two bulk liquids.
- By observing the rate at which the beaker level changes, the superfluid velocity has been found to be about 20 cm/s.

Thermomechanical Effect

- If a temperature gradient is set up between two bulk volumes connected by a *superleak*, through which only the superfluid can flow, the superfluid flows to the higher temperature side, in order to reduce the temperature gradient.
- This is an example of the *thermomechanical effect*. It shows that heat transfer and mass transfer cannot be separated in He II.

Thermomechanical Effect



- At equilibrium we have (Gibb's Free Energies)
- $G_A = G_B; \text{ i.e. } \Delta G = 0.$ • Now, dG = -S dT + V dP = 0

 $\Delta \mathbf{P} = (\mathbf{S}/\mathbf{V}) \ \Delta \mathbf{T} = (\mathbf{s}/\mathbf{v}) \ \Delta \mathbf{T},$

where **s** and **v** are the values per kg. $\rho = 1/v$, so that, $\Delta P = s \rho \Delta T$.

The Fountain Effect

- In this famous experiment of Allen and Jones (1938), the superleak is heated by a flashlight.
- In order to equalize temperatures, the superfluid flows through the superleak with sufficient speed to produce a fountain rising 30 cm or more.
- According to Landau's theory (1941), the normal fluid consists of the excited quantum states. The fine channels in the superleak filter out the excited states